CORRELATION OF ROOT CHARACTERS TO SEED CHARACTERS OF 27 SOYBEAN GENOTYPES (GLYCINE MAX (L.) MERILL) IN THE RAINY SEASON WITHOUT APPLICATION OF N FERTILIZER
Keywords:
Path Analysis, soybean, N Fertilizer, Rainy seasonAbstract
Fulfillment of N element requirement in soybean cultivation is supported not only by environmental condition, but also by N-fixing microbial activity. One group of bacteria that is able to provide nutrients for plants is Rhizobium japonicum bacteria which causes the formation of root nodules. The purpose of this study was to analyze the relationship of root characters, and to find out which characters have the greatest influence on the seed weight of 27 soybean genotypes (Glycine max (L.) merill) in the rainy season without N fertilizer. The relationship between the observed characters was analyzed using correlation test, while to determine the direct and indirect effects of each character on the results were analyzed using path analysis. The relationship between the characters of the number of effective taproot nodules and the number of effective fibrous root nodules on seed weight per plant had a positive but not significant correlation. The greatest direct influence on seed weight per plant was shown in the character of the number of effective taproot nodules.
References
[1] Pusat Data dan Sistem Informasi Pertanian Sekretariat Jendral Kementrian Pertanian. (2020). Outlook Kedelai Komoditas Pertanian Sub Sektor Tanaman Pangan. Jakarta: Pusdatin.
[2] Pusat Data dan Sistem Informasi Pertanian Sekretariat Jendral Kementrian Pertanian. (2022). Buletin Konsumsi Pangan. Jakarta: Pusdatin.
[3]. Badan Pusat Statistik. (2022). Perkembangan Produksi Kedelai 2012-2021. Jakarta.
[4] Hastini, T., Darmawan, & Ishaq, I. (2014). Penampilan Agronomi 11 Varietas Unggul Baru Padi Di Kabupaten Indramayu. Agrotrop, 4(1), 73–81.
[5] Harun, M. U., Irsan, C., & Kriswantoro, H. (2022). Morfologi, Hasil, dan Korelasi Organ Vegetatif dan Generatif Tanaman Kedelai Varietas Wilis di Tanah Masam pada Musim Hujan: Morfologi, Hasil, dan Korelasi Organ Vegetatif dan Generatif Tanaman Kedelai Varietas Wilis di Tanah Masam pada Musim Hujan. AGROSAINSTEK: Jurnal Ilmu dan Teknologi Pertanian 6(2), 1-8
[6] Ruminta, R., Irwan, A. W., Nurmala, T., & Ramadayanty, G. (2020). Analisis Dampak Perubahan Iklim Terhadap Produksi Kedelai Dan Pilihan Adaptasi Strategisnya Pada Lahan Tadah Hujan Di Kabupaten Garut. Kultivasi, 19(2), 1089–1097. Https://Doi.Org/10.24198/Kultivasi.V19i2.27998
[7] Wijaya, A. A., & Sukmasari, M. D. (2022). Penampilan Enam Kultivar Unggul Kedelai Pada Berbagai Jarak Tanam Yang Berbeda Untuk Penanaman Di Musim Hujan. AGRIVET 10(01): 90–96.
[8]. Koryati, T., Fatimah, & Dolly, S. (2022). Peranan Rhizobium Dalam Fiksasi N Tanaman Legum. Jurnal Penelitian Bidang Ilmu Pertanian 20(3), 8–17.
[9]. Muis, R., Ghulamahdi, M., Melati, M., Purwono, & Mansur, I. (2016). Kompatibilitas Fungi Mikoriza Arbuskular Dengan Tanaman Kedelai Pada Budi Daya Jenuh Air. Media.Neliti.Com, 35 No. 3, 229–238.
[10]. Korobko, A., R. Kravets, O. Mazur, O. Mazur, and N Shevchenko. 2024. Nitrogen fixing capacity of soybean varieties depending on seed inoculantion and foliar fertilization with biopreparations. Journal of Ecological Engineering. 25(4): 23-37.
[11]. Hartati, R. D., Suryaman, M., & Saepudin, A. (2023). Pengaruh Pemberian Bakteri Pelarut Fosfat Pada Berbagai pH Tanah Terhadap Pertumbuhan Dan Hasil Kedelai ( Glycine Max ( L .) Merr ). Journal of Agrotechnologi and Crops Science. 1(1): 26–34.
[12]. Sutoyo. 1992. Respon berbagai kultivar kedelai terhadap inokulasi B. japonicum dilacak dengan N. [Tesis]. Sekolah Pascasarjana. Institut Pertanian Bogor, Bogor.
[13]. Salvagiotti, F., K.G. Cassman, J.E. Specht, D.T. Walters, A. Weiss, and A. Dobermann. Nitorgen uptake, fixation and response to fertilizer N in soybeans: A review. Field Crops Research. 108 (2008): 1-13
[14]. Salvagiotti, F., J.E. Spect, K.G. Cassman, D.T. Walters, A. Weiss and A. Dobermann. 2009. Growth and nitrogen fixation in high yielding soybean: impact of nitrogen fertilization. Agronomy Journal. Vol. 101. Issue 4.
[15]. Li, R., H. Chen, Z. Yang, S. Yuan, and X. Zhou. 2020. Research status of soybean symbiosis nitrogen fixation. Oil Crop Science. 5 (2020): 6-10
[16]. Syaharani, F., Muslikah, S., dan Arfarita, N. (2022). Efek Pemberian Pupuk Hayati VP3 yang Diperkaya Trichoderma viride FRP3 terhadap Total Populasi Mikroorganisme Tanah dan Pertumbuhan Tanaman Kedelai (Glycine max (L) Merrill). Folium: Jurnal Ilmu Pertanian, 6(2), 102-117.
[17]. Karamina, H., Fikrinda, W., & Murti, A. T. (2017). Kompleksitas pengaruh temperatur dan kelembaban tanah terhadap nilai pH tanah di perkebunan jambu biji varietas kristal (Psidium guajava l.) Bumiaji, Kota Batu. Kultivasi, 16(3).
[18]. Pradiko, I., Farrasati, R., Rahutomo, S., Ginting, E. N., Candra, D. A. A., Krissetya, Y. A., & Mahendra, Y. S. (2020). Pengaruh iklim terhadap dinamika kelembaban tanah di piringan pohon tanaman kelapa sawit. WARTA Pusat Penelitian Kelapa Sawit, 25(1), 39-51.
[19]. Kusuma, Y. R. dan Yanti, I. K. A. (2021). Pengaruh kadar air dalam tanah terhadap kadar C-organik dan keasaman (pH) tanah. Indonesian Journal of Chemical Research, 92-97.
[20]. Pitojo, S. (2003). Benih Kedelai. KANISIUS. Yogyakarta
[21]. Jumakir, J. (2020). Respons Fisiologis Tanaman Kedelai Terhadap Lingkungan Tumbuh (Pertanaman kedelai di tengah pandemi covid-19). Prosiding Webinar Nasional Series: Sistem Pertanian Terpadu dalam Pemberdayaan Petani di Era New Normal, 291-298.
[22]. Nugroho, H., dan Jumakir, J. (2020). Respon Pertumbuhan dan Hasil Tanaman Kedelai terhadap Iklim Mikro. Prosiding Webinar Nasional Series: Sistem Pertanian Terpadu dalam Pemberdayaan Petani di Era New Normal, 265-274.
[23]. Chairudin, C., Efendi, E., & Sabaruddin, S. (2015). Dampak naungan terhadap perubahan karakter agronomi dan morfo-fisiologi daun pada tanaman kedelai (Glycine max (L.) Merrill). Jurnal Floratek, 10(1), 26-35
[24]. Maslard C. M. Arkoun, C. Salon, and M. Prudent. 2021. Root architecture characterization in relation to biomass allocation and biological nitrogen fixation in a collection of European soybean genotypes. OCL. 28, 48
[25]. Kunert, K.J., B.J Voster, B. A. Fenta, T. Kibido, G. Dionisia, and C. H. Foyer. 2016. Drought stress responses in soybean roots and nodule. Front Plant Sci. 7: 1015.
[26]. Nakano, S., K. Homma, and T. Shiraiwa. 2021. Modeling biomass and yield production based on nitrogen accumulation in soybean grown in upland fields converterted from paddy fields in Japan. Plant Production Science. Vol. 22, No. 4
[27]. Agustina L. 2004. Dasar Nutrisi Tanaman. Rineka Cipta, Jakarta.
[28]. Setiawan, B., Andayani, N., dan Rochmiyati, S. M. (2023). Aplikasi By Product pada Tanah Pasir dan Lempung terhadap Produktivitas Kelapa Sawit di Perkebunan Tanjung Paring Estate. AGROFORETECH, 1(3), 1429-1437.
[29]. Taufiq, A., T., Dan Sundari. (2012). Respons Tanaman Kedelai Terhadap Lingkungan Tumbuh. Buletin Palawija. 0(23):13- 26.
[30]. Gardner, F.P., R.B Peace Dan R.L Mitchell. 1991. Fisiologi tanaman budidaya (edisi terjemahaan oleh Herawati Susilo dan Subiyanto) Jakarta: Universitas Indonesia Press 428p.
[31]. Setiawan., dan A. Wahyudi. 2014. Pengaruh Giberelin Terhadap Pertumbuhan Beberapa Varietas Lada untuk Penyediaan Benih Secara Cepat. Bul. Littro, 25(2), 111-118.
[32]. Krisdianto, A., E. Saptaningsih, Y. Nurhayati, dan N. Setiari. (2020). Pertumbuhan Plantlet Anggrek Phalaenopsis amabilis (L.) Blume Pada Tahap Subkultur Dengan Perlakuan Jenis Media Dan Konsentrasi Pepton Berbeda. Jurna Metamorfosa, 7(2): 182-190.